Modernising fish and shark growth curves with Bayesian length-at-age models
Jonathan J Smart and
Gretchen L Grammer
PLOS ONE, 2021, vol. 16, issue 2, 1-21
Abstract:
Growth modelling is a fundamental component of fisheries assessments but is often hindered by poor quality data from biased sampling. Several methods have attempted to account for sample bias in growth analyses. However, in many cases this bias is not overcome, especially when large individuals are under-sampled. In growth models, two key parameters have a direct biological interpretation: L0, which should correspond to length-at-birth and L∞, which should approximate the average length of full-grown individuals. Here, we present an approach of fitting Bayesian growth models using Markov Chain Monte Carlo (MCMC), with informative priors on these parameters to improve the biological plausibility of growth estimates. A generalised framework is provided in an R package ‘BayesGrowth’, which removes the hurdle of programming an MCMC model for new users. Four case studies representing different sampling scenarios as well as three simulations with different selectivity functions were used to compare this Bayesian framework to standard frequentist growth models. The Bayesian models either outperformed or matched the results of frequentist growth models in all examples, demonstrating the broad benefits offered by this approach. This study highlights the impact that Bayesian models could provide in age and growth studies if applied more routinely rather than being limited to only complex or sophisticated applications.
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0246734 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 46734&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0246734
DOI: 10.1371/journal.pone.0246734
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().