Two distinct and separable processes underlie individual differences in algorithm adherence: Differences in predictions and differences in trust thresholds
Achiel Fenneman,
Joern Sickmann,
Thomas Pitz and
Alan G Sanfey
PLOS ONE, 2021, vol. 16, issue 2, 1-20
Abstract:
Algorithms play an increasingly ubiquitous and vitally important role in modern society. However, recent findings suggest substantial individual variability in the degree to which people make use of such algorithmic systems, with some users preferring the advice of algorithms whereas others selectively avoid algorithmic systems. The mechanisms that give rise to these individual differences are currently poorly understood. Previous studies have suggested two possible effects that may underlie this variability: users may differ in their predictions of the efficacy of algorithmic systems, and/or in the relative thresholds they hold to place trust in these systems. Based on a novel judgment task with a large number of within-subject repetitions, here we report evidence that both mechanisms exert an effect on experimental participant’s degree of algorithm adherence, but, importantly, that these two mechanisms are independent from each-other. Furthermore, participants are more likely to place their trust in an algorithmically managed fund if their first exposure to the task was with an algorithmic manager. These findings open the door for future research into the mechanisms driving individual differences in algorithm adherence, and allow for novel interventions to increase adherence to algorithms.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0247084 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 47084&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0247084
DOI: 10.1371/journal.pone.0247084
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().