EconPapers    
Economics at your fingertips  
 

Probabilistic analysis of COVID-19 patients’ individual length of stay in Swiss intensive care units

Alexander Henzi, Gian-Reto Kleger, Matthias P Hilty, Pedro D Wendel Garcia, Johanna F Ziegel and on behalf of RISC-19-ICU Investigators for Switzerland

PLOS ONE, 2021, vol. 16, issue 2, 1-14

Abstract: Rationale: The COVID-19 pandemic induces considerable strain on intensive care unit resources. Objectives: We aim to provide early predictions of individual patients’ intensive care unit length of stay, which might improve resource allocation and patient care during the on-going pandemic. Methods: We developed a new semiparametric distributional index model depending on covariates which are available within 24h after intensive care unit admission. The model was trained on a large cohort of acute respiratory distress syndrome patients out of the Minimal Dataset of the Swiss Society of Intensive Care Medicine. Then, we predict individual length of stay of patients in the RISC-19-ICU registry. Measurements: The RISC-19-ICU Investigators for Switzerland collected data of 557 critically ill patients with COVID-19. Main results: The model gives probabilistically and marginally calibrated predictions which are more informative than the empirical length of stay distribution of the training data. However, marginal calibration was worse after approximately 20 days in the whole cohort and in different subgroups. Long staying COVID-19 patients have shorter length of stay than regular acute respiratory distress syndrome patients. We found differences in LoS with respect to age categories and gender but not in regions of Switzerland with different stress of intensive care unit resources. Conclusion: A new probabilistic model permits calibrated and informative probabilistic prediction of LoS of individual patients with COVID-19. Long staying patients could be discovered early. The model may be the basis to simulate stochastic models for bed occupation in intensive care units under different casemix scenarios.

Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0247265 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 47265&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0247265

DOI: 10.1371/journal.pone.0247265

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0247265