Multiple-to-multiple path analysis model
Yujie Du,
Junli Du,
Xi Liu and
Zhifa Yuan
PLOS ONE, 2021, vol. 16, issue 3, 1-17
Abstract:
One-to-multiple path analysis model describes the regulation mechanism of multiple independent variables to one dependent variable by dividing the correlation coefficient and the determination coefficient. How to analyse more complex regulation mechanisms of multiple independent variables to multiple dependent variables? Similarly, according to multiple-to-multiple linear regression analysis, multiple-to-multiple path analysis model was proposed in this paper and it demonstrated more complex regulation mechanisms among multiple independent variables and multiple dependent variables by dividing the generalized determination coefficient. Differently, three other types of paths were generated in multiple-to-multiple path analysis model in that the correlation among multiple dependent variables was considered. Then, the decision coefficient of each independent variable was constructed for dependent variables system, and its hypothesis testing statistics were given. Finally, the research example of the wheat breeding rules in arid area demonstrated that the multiple-to-multiple path analysis considering more correlation information can get better results.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0247722 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 47722&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0247722
DOI: 10.1371/journal.pone.0247722
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().