Viscosity estimation model of fluorine-containing mold flux for continuous casting
Zhongyu Zhao,
Junxue Zhao,
Boqiao Qu and
Yaru Cui
PLOS ONE, 2021, vol. 16, issue 3, 1-11
Abstract:
A viscosity estimation model for fluorine-containing mold flux for continuous casting was investigated based on the Arrhenius formula and the rotating cylinder method combined with nonlinear regression analysis. This model is highly applicable and not limited by the slag of a certain composition. For most slag compositions, the viscosities estimated with this model deviated from the measured values by no more than 10%, which was in better agreement with the measured values than the viscosities estimated by the Riboud, Iida and Mills models. According to the model calculation and experimental detection, a viscosity isogram of CaF2-Na2O-Al2O3-CaO-SiO2-MgO slag was produced, and the mass fraction of CaF2 in the low-viscosity zone was nearly 14%. An X-ray fluorescence spectrometric analysis of slag after the viscosity test showed that CaF2 and Na2O were significantly reduced, and the measured viscosity was greater than the theoretical viscosity due to the volatilization.
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0247828 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 47828&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0247828
DOI: 10.1371/journal.pone.0247828
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().