A CLSTM and transfer learning based CFDAMA strategy in satellite communication networks
Qiang He,
Zheng Xiang and
Peng Ren
PLOS ONE, 2021, vol. 16, issue 3, 1-21
Abstract:
With the development of the economy and technology, people’s requirement for communication is also increasing. Satellite communication networks have been paid more and more attention because of their broadband service capability and wide coverage. In this paper, we investigate the scheme of convolutional long short term memory (CLSTM) network and transfer learning (TL) based combined free/demand assignment multiple access (CFDAMA) scheme (CFDAMA-CLSTMTL), which is a new multiple access scheme in the satellite communication networks. Generally, there is a delay time T between sending a request from the user to the satellite and receiving a reply from the satellite. So far, the traditional multiple access schemes have not processed the data generated in this period. So, in order to transmit the data in time, we propose a new prediction method CLSTMTL, which can be used to predict the data generated in this period. We introduce the prediction method into the CFDAMA scheme so that it can reduce data accumulation by the way of sending the slots request which is the sum of slots requested by the user and the predicted slots generated in the delay time. A comparison with CFDAMA-PA and CFDAMA-PB is provided through simulation results, which gives the effect of the CFDAMA-CLSTMTL in a satellite communication network.
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0248271 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 48271&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0248271
DOI: 10.1371/journal.pone.0248271
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().