EconPapers    
Economics at your fingertips  
 

Simple gravitational particle swarm algorithm for multimodal optimization problems

Yoshikazu Yamanaka and Katsutoshi Yoshida

PLOS ONE, 2021, vol. 16, issue 3, 1-23

Abstract: In real world situations, decision makers prefer to have multiple optimal solutions before making a final decision. Aiming to help the decision makers even if they are non-experts in optimization algorithms, this study proposes a new and simple multimodal optimization (MMO) algorithm called the gravitational particle swarm algorithm (GPSA). Our GPSA is developed based on the concept of “particle clustering in the absence of clustering procedures”. Specifically, it simply replaces the global feedback term in classical particle swarm optimization (PSO) with an inverse-square gravitational force term between the particles. The gravitational force mutually attracts and repels the particles, enabling them to autonomously and dynamically generate sub-swarms in the absence of algorithmic clustering procedures. Most of the sub-swarms gather at the nearby global optima, but a small number of particles reach the distant optima. The niching behavior of our GPSA was tested first on simple MMO problems, and then on twenty MMO benchmark functions. The performance indices (peak ratio and success rate) of our GPSA were compared with those of existing niching PSOs (ring-topology PSO and fitness Euclidean-distance ratio PSO). The basic performance of our GPSA was comparable to that of the existing methods. Furthermore, an improved GPSA with a dynamic parameter delivered significantly superior results to the existing methods on at least 60% of the tested benchmark functions.

Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0248470 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 48470&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0248470

DOI: 10.1371/journal.pone.0248470

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0248470