Cost–benefit model for multi-generational high-technology products to compare sequential innovation strategy with quality strategy
Hyoung Jun Kim,
Su Jung Jee and
So Young Sohn
PLOS ONE, 2021, vol. 16, issue 4, 1-17
Abstract:
In the rapidly changing high-tech industry, firms that produce multi-generational products struggle to consistently introduce new products that are superior in innovativeness. However, developing innovative products in a short time sequence period is likely to cause quality problems. Therefore, considering time and resource constraints, two kinds of strategies are commonly employed: sequential innovation strategy, sequentially introducing a new generation of technology product at every launch interval, ensuring timely innovativeness but with relatively uncertain quality, or quality strategy, intermittently introducing a new generation of products, together with a derivative model between generations to enhance the quality. In this study, we propose a framework for a cost–benefit analysis that compares these two strategies by considering competition between firms within a generation as well as that within a firm across multiple generations (i.e., cannibalization) throughout the launch cycle of high-tech products. We apply our proposed framework to the smartphone market and conduct a sensitivity analysis. The results are expected to contribute to strategic decision-making related to the introduction of multi-generational technology products.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0249124 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 49124&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0249124
DOI: 10.1371/journal.pone.0249124
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().