Prediction of air traffic delays: An agent-based model introducing refined parameter estimation methods
Chunzheng Wang,
Minghua Hu,
Lei Yang and
Zheng Zhao
PLOS ONE, 2021, vol. 16, issue 4, 1-22
Abstract:
We propose an agent-based model for predicting individual flight delays in an entire air traffic network. In contrast to previous work, more detailed parameter estimation methods were incorporated into the agent-based model, acting on the state transitions of agents. Specifically, a conditional probability model was proposed for modifying the expected departure time, which was used to indicate whether a flight had experienced the necessary waiting due to Ground Delay Programs (GDPs) or carrier-related reasons. Additionally, two random forest regression models were presented for estimating the turnaround time and the elapsed time of flight agents in the agent-based delay prediction model. The parameter models were trained and fitted using the flight data for 2017 in the United States. The performance of the delay prediction model was tested for thirty days with three types of delay levels (low, medium, and high), which were randomly selected from 2018. The experimental results showed that the average absolute error in the test days was 6.8 min, and the classification accuracy with a 15 min threshold for a two-hour forecast horizon was 89.5%. The performance of our model outperformed that of existing research. Additionally, the positive effect of introducing parameter models and the negative impact of increasing the prediction horizon on the prediction performance were further studied.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0249754 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 49754&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0249754
DOI: 10.1371/journal.pone.0249754
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().