A hybrid differential evolution based on gaining‑sharing knowledge algorithm and harris hawks optimization
Xuxu Zhong,
Meijun Duan,
Xiao Zhang and
Peng Cheng
PLOS ONE, 2021, vol. 16, issue 4, 1-24
Abstract:
Differential evolution (DE) is favored by scholars for its simplicity and efficiency, but its ability to balance exploration and exploitation needs to be enhanced. In this paper, a hybrid differential evolution with gaining-sharing knowledge algorithm (GSK) and harris hawks optimization (HHO) is proposed, abbreviated as DEGH. Its main contribution lies are as follows. First, a hybrid mutation operator is constructed in DEGH, in which the two-phase strategy of GSK, the classical mutation operator “rand/1” of DE and the soft besiege rule of HHO are used and improved, forming a double-insurance mechanism for the balance between exploration and exploitation. Second, a novel crossover probability self-adaption strategy is proposed to strengthen the internal relation among mutation, crossover and selection of DE. On this basis, the crossover probability and scaling factor jointly affect the evolution of each individual, thus making the proposed algorithm can better adapt to various optimization problems. In addition, DEGH is compared with eight state-of-the-art DE algorithms on 32 benchmark functions. Experimental results show that the proposed DEGH algorithm is significantly superior to the compared algorithms.
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0250951 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 50951&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0250951
DOI: 10.1371/journal.pone.0250951
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().