EconPapers    
Economics at your fingertips  
 

Multitask feature learning approach for knowledge graph enhanced recommendations with RippleNet

YueQun Wang, LiYan Dong, YongLi Li and Hao Zhang

PLOS ONE, 2021, vol. 16, issue 5, 1-21

Abstract: Introducing a knowledge graph into a recommender system as auxiliary information can effectively solve the sparse and cold start problems existing in traditional recommender systems. In recent years, many researchers have performed related work. A recommender system with knowledge graph embedding learning characteristics can be combined with a recommender system of the following three forms: one-by-one learning, joint learning, and alternating learning. For current knowledge graph embedding, a deep learning framework only has one embedding mode, which fails to excavate the potential information from the knowledge graph thoroughly. To solve this problem, this paper proposes the Ripp-MKR model, a multitask feature learning approach for knowledge graph enhanced recommendations with RippleNet, which combines joint learning and alternating learning of knowledge graphs and recommender systems. Ripp-MKR is a deep end-to-end framework that utilizes a knowledge graph embedding task to assist recommendation tasks. Similar to the MKR model, in the Ripp-MKR model, two tasks are associated with cross and compress units, which automatically share latent features and learn the high-order interactions among items in recommender systems and entities in the knowledge graph. Additionally, the model borrows ideas from RippleNet and combines the knowledge graph with the historical interaction record of a user’s historically clicked items to represent the user’s characteristics. Through extensive experiments on real-world datasets, we demonstrate that Ripp-MKR achieves substantial gains over state-of-the-art baselines in movie, book, and music recommendations.

Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0251162 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 51162&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0251162

DOI: 10.1371/journal.pone.0251162

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0251162