EconPapers    
Economics at your fingertips  
 

An end-to-end sea fog removal network using multiple scattering model

Shunmin An, Xixia Huang, Zhangjing Zheng and Linling Wang

PLOS ONE, 2021, vol. 16, issue 5, 1-15

Abstract: An end-to-end sea fog removal network using multiple scattering model was proposed. In this network, the atmospheric multiple scattering model was re-formulated and used for sea fog removal. Compared with the atmospheric single scattering model, the atmospheric multiple scattering model could more comprehensively consider the effect of multiple scattering, which was important to the dense fog scenes, such as in ocean scene. Therefore, we used the atmospheric multiple scattering model to avoid image blurring. The model can directly generate the dehazing results, and unify the three parameters of the transmission map, the atmospheric light and the blur kernel into one formula. The latest smooth dilation and sub-pixel techniques were used in the network model. The latest techniques can avoid the gridding artifacts and the halo artifacts, the multi-scale sub-network was used to consider the features of multi-scale. In addition, multiple loss functions were used in end-to-end network. In the experimental results, the model was superior to the state-of-the-art models in terms of quantitatively and qualitatively.

Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0251337 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 51337&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0251337

DOI: 10.1371/journal.pone.0251337

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0251337