On closed-form tight bounds and approximations for the median of a gamma distribution
Richard F Lyon
PLOS ONE, 2021, vol. 16, issue 5, 1-18
Abstract:
The median of a gamma distribution, as a function of its shape parameter k, has no known representation in terms of elementary functions. In this work we use numerical simulations and asymptotic analyses to bound the median, finding bounds of the form 2−1/k(A + Bk), including an upper bound that is tight for low k and a lower bound that is tight for high k. These bounds have closed-form expressions for the constant parameters A and B, and are valid over the entire range of k > 0, staying between 48 and 55 percentile. Furthermore, an interpolation between these bounds yields closed-form expressions that more tightly bound the median, with absolute and relative margins to both upper and lower bounds approaching zero at both low and high values of k. These bound results are not supported with analytical proofs, and hence should be regarded as conjectures. Simple approximation expressions between the bounds are also found, including one in closed form that is exact at k = 1 and stays between 49.97 and 50.03 percentile.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0251626 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 51626&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0251626
DOI: 10.1371/journal.pone.0251626
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().