EEG microstate features for schizophrenia classification
Kyungwon Kim,
Nguyen Thanh Duc,
Min Choi and
Boreom Lee
PLOS ONE, 2021, vol. 16, issue 5, 1-21
Abstract:
Electroencephalography (EEG) microstate analysis is a method wherein spontaneous EEG activity is segmented at sub-second levels to analyze quasi-stable states. In particular, four archetype microstates and their features are known to reflect changes in brain state in neuropsychiatric diseases. However, previous studies have only reported differences in each microstate feature and have not determined whether microstate features are suitable for schizophrenia classification. Therefore, it is necessary to validate microstate features for schizophrenia classification. Nineteen microstate features, including duration, occurrence, and coverage as well as thirty-one conventional EEG features, including statistical, frequency, and temporal characteristics were obtained from resting-state EEG recordings of 14 patients diagnosed with schizophrenia and from 14 healthy (control) subjects. Machine-learning based multivariate analysis was used to evaluate classification performance. EEG recordings of patients and controls showed different microstate features. More importantly, when differentiating among patients and controls, EEG microstate features outperformed conventional EEG ones. The performance of the microstate features exceeded that of conventional EEG, even after optimization using recursive feature elimination. EEG microstate features applied with conventional EEG features also showed better classification performance than conventional EEG features alone. The current study is the first to validate the use of microstate features to discriminate schizophrenia, suggesting that EEG microstate features are useful for schizophrenia classification.
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0251842 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 51842&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0251842
DOI: 10.1371/journal.pone.0251842
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().