EconPapers    
Economics at your fingertips  
 

Application of naïve Bayesian approach in detecting reproducible fatal collision locations on freeway

Eui-Jin Kim, Oh Hoon Kwon, Shin Hyoung Park, Dong-Kyu Kim and Koohong Chung

PLOS ONE, 2021, vol. 16, issue 5, 1-21

Abstract: Detecting high-collision-concentration locations based solely on collision frequency may produce different results compared to those considering the severities of the collisions. In particular, it can lead government agencies focusing sites with a high collision frequency while neglecting those with a lower collision frequency but a higher percentage of injury and fatal collisions. This study developed systematic ways of detecting reproducible fatal collision locations (R) using the naïve Bayes approach and a continuous risk profile (CRP) that estimates the true collision risk by filtering out random noise in the data. The posterior probability of fatal collisions being reproducible at a location is estimated by the relationship between the spatial distribution of fatal-collision locations (i.e., likelihood) and the CRP (i.e., prior probability). The proposed method can be used to detect sites with the highest proxy measure of the posterior probability (PMP) of observing R. An empirical evaluation using 5-year traffic collision data from six routes in California shows that detecting R based on the PMP outperform those based on the SPF-based approaches or random selection, regardless of various conditions and parameters of the proposed method. This method only requires traffic collision and annual traffic volume data to estimate PMP that prioritize sites being R and the PMPs can be compared across multiple routes. Therefore, it helps government agencies prioritizing sites of multiple routes where the number of fatal collisions can be reduced, thus help them to save lives with limited resources of data collection.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0251866 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 51866&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0251866

DOI: 10.1371/journal.pone.0251866

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-04-20
Handle: RePEc:plo:pone00:0251866