DPP: Deep predictor for price movement from candlestick charts
Chih-Chieh Hung and
Ying-Ju Chen
PLOS ONE, 2021, vol. 16, issue 6, 1-22
Abstract:
Forecasting the stock market prices is complicated and challenging since the price movement is affected by many factors such as releasing market news about earnings and profits, international and domestic economic situation, political events, monetary policy, major abrupt affairs, etc. In this work, a novel framework: deep predictor for price movement (DPP) using candlestick charts in the stock historical data is proposed. This framework comprises three steps: 1. decomposing a given candlestick chart into sub-charts; 2. using CNN-autoencoder to acquire the best representation of sub-charts; 3. applying RNN to predict the price movements from a collection of sub-chart representations. An extensive study is operated to assess the performance of the DPP based models using the trading data of Taiwan Stock Exchange Capitalization Weighted Stock Index and a stock market index, Nikkei 225, for the Tokyo Stock Exchange. Three baseline models based on IEM, Prophet, and LSTM approaches are compared with the DPP based models.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0252404 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 52404&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0252404
DOI: 10.1371/journal.pone.0252404
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().