EconPapers    
Economics at your fingertips  
 

Occupational profiling driven by online job advertisements: Taking the data analysis and processing engineering technicians as an example

Lina Cao, Jian Zhang, Xinquan Ge and Jindong Chen

PLOS ONE, 2021, vol. 16, issue 6, 1-20

Abstract: The occupational profiling system driven by the traditional survey method has some shortcomings such as lag in updating, time consumption and laborious revision. It is necessary to refine and improve the traditional occupational portrait system through dynamic occupational information. Under the circumstances of big data, this paper showed the feasibility of vocational portraits driven by job advertisements with data analysis and processing engineering technicians (DAPET) as an example. First, according to the description of occupation in the Chinese Occupation Classification Grand Dictionary, a text similarity algorithm was used to preliminarily choose recruitment data with high similarity. Second, Convolutional Neural Networks for Sentence Classification (TextCNN) was used to further classify the preliminary corpus to obtain a precise occupational dataset. Third, the specialty and skill were taken as named entities that were automatically extracted by the named entity recognition technology. Finally, putting the extracted entities into the occupational dataset, the occupation characteristics of multiple dimensions were depicted to form a profile of the vocation.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0253308 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 53308&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0253308

DOI: 10.1371/journal.pone.0253308

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0253308