An empirical survey of data augmentation for time series classification with neural networks
Brian Kenji Iwana and
Seiichi Uchida
PLOS ONE, 2021, vol. 16, issue 7, 1-32
Abstract:
In recent times, deep artificial neural networks have achieved many successes in pattern recognition. Part of this success can be attributed to the reliance on big data to increase generalization. However, in the field of time series recognition, many datasets are often very small. One method of addressing this problem is through the use of data augmentation. In this paper, we survey data augmentation techniques for time series and their application to time series classification with neural networks. We propose a taxonomy and outline the four families in time series data augmentation, including transformation-based methods, pattern mixing, generative models, and decomposition methods. Furthermore, we empirically evaluate 12 time series data augmentation methods on 128 time series classification datasets with six different types of neural networks. Through the results, we are able to analyze the characteristics, advantages and disadvantages, and recommendations of each data augmentation method. This survey aims to help in the selection of time series data augmentation for neural network applications.
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0254841 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 54841&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0254841
DOI: 10.1371/journal.pone.0254841
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().