Deep learning neural networks to differentiate Stafne’s bone cavity from pathological radiolucent lesions of the mandible in heterogeneous panoramic radiography
Ari Lee,
Min Su Kim,
Sang-Sun Han,
PooGyeon Park,
Chena Lee and
Jong Pil Yun
PLOS ONE, 2021, vol. 16, issue 7, 1-10
Abstract:
This study aimed to develop a high-performance deep learning algorithm to differentiate Stafne’s bone cavity (SBC) from cysts and tumors of the jaw based on images acquired from various panoramic radiographic systems. Data sets included 176 Stafne’s bone cavities and 282 odontogenic cysts and tumors of the mandible (98 dentigerous cysts, 91 odontogenic keratocysts, and 93 ameloblastomas) that required surgical removal. Panoramic radiographs were obtained using three different imaging systems. The trained model showed 99.25% accuracy, 98.08% sensitivity, and 100% specificity for SBC classification and resulted in one misclassified SBC case. The algorithm was approved to recognize the typical imaging features of SBC in panoramic radiography regardless of the imaging system when traced back with Grad-Cam and Guided Grad-Cam methods. The deep learning model for SBC differentiating from odontogenic cysts and tumors showed high performance with images obtained from multiple panoramic systems. The present algorithm is expected to be a useful tool for clinicians, as it diagnoses SBCs in panoramic radiography to prevent unnecessary examinations for patients. Additionally, it would provide support for clinicians to determine further examinations or referrals to surgeons for cases where even experts are unsure of diagnosis using panoramic radiography alone.
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0254997 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 54997&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0254997
DOI: 10.1371/journal.pone.0254997
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().