EconPapers    
Economics at your fingertips  
 

Using symptom-based case predictions to identify host genetic factors that contribute to COVID-19 susceptibility

Irene V van Blokland, Pauline Lanting, Anil P S Ori, Judith M Vonk, Robert C A Warmerdam, Johanna C Herkert, Floranne Boulogne, Annique Claringbould, Esteban A Lopera-Maya, Meike Bartels, Jouke-Jan Hottenga, Andrea Ganna, Juha Karjalainen, Lifelines COVID-19 cohort Study, The COVID-19 Host Genetics Initiative, Caroline Hayward, Chloe Fawns-Ritchie, Archie Campbell, David Porteous, Elizabeth T Cirulli, Kelly M Schiabor Barrett, Stephen Riffle, Alexandre Bolze, Simon White, Francisco Tanudjaja, Xueqing Wang, Jimmy M Ramirez, Yan Wei Lim, James T Lu, Nicole L Washington, Eco J C de Geus, Patrick Deelen, H Marike Boezen and Lude H Franke

PLOS ONE, 2021, vol. 16, issue 8, 1-18

Abstract: Epidemiological and genetic studies on COVID-19 are currently hindered by inconsistent and limited testing policies to confirm SARS-CoV-2 infection. Recently, it was shown that it is possible to predict COVID-19 cases using cross-sectional self-reported disease-related symptoms. Here, we demonstrate that this COVID-19 prediction model has reasonable and consistent performance across multiple independent cohorts and that our attempt to improve upon this model did not result in improved predictions. Using the existing COVID-19 prediction model, we then conducted a GWAS on the predicted phenotype using a total of 1,865 predicted cases and 29,174 controls. While we did not find any common, large-effect variants that reached genome-wide significance, we do observe suggestive genetic associations at two SNPs (rs11844522, p = 1.9x10-7; rs5798227, p = 2.2x10-7). Explorative analyses furthermore suggest that genetic variants associated with other viral infectious diseases do not overlap with COVID-19 susceptibility and that severity of COVID-19 may have a different genetic architecture compared to COVID-19 susceptibility. This study represents a first effort that uses a symptom-based predicted phenotype as a proxy for COVID-19 in our pursuit of understanding the genetic susceptibility of the disease. We conclude that the inclusion of symptom-based predicted cases could be a useful strategy in a scenario of limited testing, either during the current COVID-19 pandemic or any future viral outbreak.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0255402 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 55402&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0255402

DOI: 10.1371/journal.pone.0255402

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0255402