EconPapers    
Economics at your fingertips  
 

Improving information retrieval from electronic health records using dynamic and multi-collaborative filtering

Xia Ning, Ziwei Fan, Evan Burgun, Zhiyun Ren and Titus Schleyer

PLOS ONE, 2021, vol. 16, issue 8, 1-24

Abstract: Due to the rapid growth of information available about individual patients, most physicians suffer from information overload and inefficiencies when they review patient information in health information technology systems. In this paper, we present a novel hybrid dynamic and multi-collaborative filtering method to improve information retrieval from electronic health records. This method recommends relevant information from electronic health records to physicians during patient visits. It models information search dynamics using a Markov model. It also leverages the key idea of collaborative filtering, originating from Recommender Systems, for prioritizing information based on various similarities among physicians, patients and information items. We tested this new method using electronic health record data from the Indiana Network for Patient Care, a large, inter-organizational clinical data repository maintained by the Indiana Health Information Exchange. Our experimental results demonstrated that, for top-5 recommendations, our method was able to correctly predict the information in which physicians were interested in 46.7% of all test cases. For top-1 recommendations, the corresponding figure was 24.7%. In addition, the new method was 22.3% better than the conventional Markov model for top-1 recommendations.

Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0255467 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 55467&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0255467

DOI: 10.1371/journal.pone.0255467

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0255467