Quantifying the impact of COVID-19 on e-bike safety in China via multi-output and clustering-based regression models
Xingpei Yan and
Zheng Zhu
PLOS ONE, 2021, vol. 16, issue 8, 1-15
Abstract:
The impacts of COVID-19 on travel demand, traffic congestion, and traffic safety are attracting heated attention. However, the influence of the pandemic on electric bike (e-bike) safety has not been investigated. This paper fills the research gap by analyzing how COVID-19 affects China’s e-bike safety based on a province-level dataset containing e-bike safety metrics, socioeconomic information, and COVID-19 cases from 2017 to 2020. Multi-output regression models are adopted to investigate the overall impact of COVID-19 on e-bike safety in China. Clustering-based regression models are used to examine the heterogeneous effects of COVID-19 and the other explanatory variables in different provinces/municipalities. This paper confirms the high relevance between COVID-19 and the e-bike safety condition in China. The number of COVID-19 cases has a significant negative effect on the number of e-bike fatalities/injuries at the country level. Moreover, two clusters of provinces/municipalities are identified: one (cluster 1) with lower and the other (cluster 2 that includes Hubei province) higher number of e-bike fatalities/injuries. In the clustering-based regressions, the absolute coefficients of the COVID-19 feature for cluster 2 are much larger than those for cluster 1, indicating that the pandemic could significantly reduce e-bike safety issues in provinces with more e-bike fatalities/injuries.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0256610 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 56610&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0256610
DOI: 10.1371/journal.pone.0256610
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().