EconPapers    
Economics at your fingertips  
 

Classifying patients with depressive and anxiety disorders according to symptom network structures: A Gaussian graphical mixture model-based clustering

Jun Kashihara, Yoshitake Takebayashi, Yoshihiko Kunisato and Masaya Ito

PLOS ONE, 2021, vol. 16, issue 9, 1-18

Abstract: Patients with mental disorders often suffer from comorbidity. Transdiagnostic understandings of mental disorders are expected to provide more accurate and detailed descriptions of psychopathology and be helpful in developing efficient treatments. Although conventional clustering techniques, such as latent profile analysis, are useful for the taxonomy of psychopathology, they provide little implications for targeting specific symptoms in each cluster. To overcome these limitations, we introduced Gaussian graphical mixture model (GGMM)-based clustering, a method developed in mathematical statistics to integrate clustering and network statistical approaches. To illustrate the technical details and clinical utility of the analysis, we applied GGMM-based clustering to a Japanese sample of 1,521 patients (Mage = 42.42 years), who had diagnostic labels of major depressive disorder (MDD; n = 406), panic disorder (PD; n = 198), social anxiety disorder (SAD; n = 116), obsessive-compulsive disorder (OCD; n = 66), comorbid MDD and any anxiety disorder (n = 636), or comorbid anxiety disorders (n = 99). As a result, we identified the following four transdiagnostic clusters characterized by i) strong OCD and PD symptoms, and moderate MDD and SAD symptoms; ii) moderate MDD, PD, and SAD symptoms, and weak OCD symptoms; iii) weak symptoms of all four disorders; and iv) strong symptoms of all four disorders. Simultaneously, a covariance symptom network within each cluster was visualized. The discussion highlighted that the GGMM-based clusters help us generate clinical hypotheses for transdiagnostic clusters by enabling further investigations of each symptom network, such as the calculation of centrality indexes.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0256902 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 56902&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0256902

DOI: 10.1371/journal.pone.0256902

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0256902