EconPapers    
Economics at your fingertips  
 

The PPLD has advantages over conventional regression methods in application to moderately sized genome-wide association studies

Veronica J Vieland and Sang-Cheol Seok

PLOS ONE, 2021, vol. 16, issue 9, 1-22

Abstract: In earlier work, we have developed and evaluated an alternative approach to the analysis of GWAS data, based on a statistic called the PPLD. More recently, motivated by a GWAS for genetic modifiers of the X-linked Mendelian disorder Duchenne Muscular Dystrophy (DMD), we adapted the PPLD for application to time-to-event (TE) phenotypes. Because DMD itself is relatively rare, this is a setting in which the very large sample sizes generally assembled for GWAS are simply not attainable. For this reason, statistical methods specially adapted for use in small data sets are required. Here we explore the behavior of the TE-PPLD via simulations, comparing the TE-PPLD with Cox Proportional Hazards analysis in the context of small to moderate sample sizes. Our results will help to inform our approach to the DMD study going forward, and they illustrate several respects in which the TE-PPLD, and by extension the original PPLD, offer advantages over regression-based approaches to GWAS in this context.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0257164 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 57164&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0257164

DOI: 10.1371/journal.pone.0257164

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0257164