EconPapers    
Economics at your fingertips  
 

Noise robustness of persistent homology on greyscale images, across filtrations and signatures

Renata Turkeš, Jannes Nys, Tim Verdonck and Steven Latré

PLOS ONE, 2021, vol. 16, issue 9, 1-26

Abstract: Topological data analysis is a recent and fast growing field that approaches the analysis of datasets using techniques from (algebraic) topology. Its main tool, persistent homology (PH), has seen a notable increase in applications in the last decade. Often cited as the most favourable property of PH and the main reason for practical success are the stability theorems that give theoretical results about noise robustness, since real data is typically contaminated with noise or measurement errors. However, little attention has been paid to what these stability theorems mean in practice. To gain some insight into this question, we evaluate the noise robustness of PH on the MNIST dataset of greyscale images. More precisely, we investigate to what extent PH changes under typical forms of image noise, and quantify the loss of performance in classifying the MNIST handwritten digits when noise is added to the data. The results show that the sensitivity to noise of PH is influenced by the choice of filtrations and persistence signatures (respectively the input and output of PH), and in particular, that PH features are often not robust to noise in a classification task.

Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0257215 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 57215&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0257215

DOI: 10.1371/journal.pone.0257215

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0257215