A novel dimension reduction algorithm based on weighted kernel principal analysis for gene expression data
Wen Bo Liu,
Sheng Nan Liang and
Xi Wen Qin
PLOS ONE, 2021, vol. 16, issue 10, 1-25
Abstract:
Gene expression data has the characteristics of high dimensionality and a small sample size and contains a large number of redundant genes unrelated to a disease. The direct application of machine learning to classify this type of data will not only incur a great time cost but will also sometimes fail to improved classification performance. To counter this problem, this paper proposes a dimension-reduction algorithm based on weighted kernel principal component analysis (WKPCA), constructs kernel function weights according to kernel matrix eigenvalues, and combines multiple kernel functions to reduce the feature dimensions. To further improve the dimensional reduction efficiency of WKPCA, t-class kernel functions are constructed, and corresponding theoretical proofs are given. Moreover, the cumulative optimal performance rate is constructed to measure the overall performance of WKPCA combined with machine learning algorithms. Naive Bayes, K-nearest neighbour, random forest, iterative random forest and support vector machine approaches are used in classifiers to analyse 6 real gene expression dataset. Compared with the all-variable model, linear principal component dimension reduction and single kernel function dimension reduction, the results show that the classification performance of the 5 machine learning methods mentioned above can be improved effectively by WKPCA dimension reduction.
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0258326 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 58326&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0258326
DOI: 10.1371/journal.pone.0258326
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().