Novel feature extraction method for signal analysis based on independent component analysis and wavelet transform
Mariusz Topolski and
Jędrzej Kozal
PLOS ONE, 2021, vol. 16, issue 12, 1-26
Abstract:
Feature extraction is an important part of data processing that provides a basis for more complicated tasks such as classification or clustering. Recently many approaches for signal feature extraction were created. However, plenty of proposed methods are based on convolutional neural networks. This class of models requires a high amount of computational power to train and deploy and large dataset. Our work introduces a novel feature extraction method that uses wavelet transform to provide additional information in the Independent Component Analysis mixing matrix. The goal of our work is to combine good performance with a low inference cost. We used the task of Electrocardiography (ECG) heartbeat classification to evaluate the usefulness of the proposed approach. Experiments were carried out with an MIT-BIH database with four target classes (Normal, Vestibular ectopic beats, Ventricular ectopic beats, and Fusion strikes). Several base wavelet functions with different classifiers were used in experiments. Best was selected with 5-fold cross-validation and Wilcoxon test with significance level 0.05. With the proposed method for feature extraction and multi-layer perceptron classifier, we obtained 95.81% BAC-score. Compared to other literature methods, our approach was better than most feature extraction methods except for convolutional neural networks. Further analysis indicates that our method performance is close to convolutional neural networks for classes with a limited number of learning examples. We also analyze the number of required operations at test time and argue that our method enables easy deployment in environments with limited computing power.
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0260764 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 60764&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0260764
DOI: 10.1371/journal.pone.0260764
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().