EconPapers    
Economics at your fingertips  
 

Acoustic emission corrosion feature extraction and severity prediction using hybrid wavelet packet transform and linear support vector classifier

Zazilah May, M K Alam, Nazrul Anuar Nayan, Noor A’in A Rahman and Muhammad Shazwan Mahmud

PLOS ONE, 2021, vol. 16, issue 12, 1-23

Abstract: Corrosion in carbon-steel pipelines leads to failure, which is a major cause of breakdown maintenance in the oil and gas industries. The acoustic emission (AE) signal is a reliable method for corrosion detection and classification in the modern Structural Health Monitoring (SHM) system. The efficiency of this system in detection and classification mainly depends on the suitable AE features. Therefore, many feature extraction and classification methods have been developed for corrosion detection and severity assessment. However, the extraction of appropriate AE features and classification of various levels of corrosion utilizing these extracted features are still challenging issues. To overcome these issues, this article proposes a hybrid machine learning approach that combines Wavelet Packet Transform (WPT) integrated with Fast Fourier Transform (FFT) for multiresolution feature extraction and Linear Support Vector Classifier (L-SVC) for predicting corrosion severity levels. A Laboratory-based Linear Polarization Resistance (LPR) test was performed on carbon-steel samples for AE data acquisition over a different time span. AE signals were collected at a high sampling rate with a sound well AE sensor using AEWin software. Simulation results show a linear relationship between the proposed approach-based extracted AE features and the corrosion process. For multi-class problems, three corrosion severity stages have been made based on the corrosion rate over time and AE activity. The ANOVA test results indicate the significance within and between the feature-groups where F-values (F-value>1) rejects the null hypothesis and P-values (P-value

Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0261040 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 61040&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0261040

DOI: 10.1371/journal.pone.0261040

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0261040