EconPapers    
Economics at your fingertips  
 

Investor sentiment-aware prediction model for P2P lending indicators based on LSTM

Yanyan Cui and Lixin Liu

PLOS ONE, 2022, vol. 17, issue 1, 1-17

Abstract: In recent years, online lending has created many risks while providing lending convenience to Chinese individuals and small and medium-sized enterprises. The timely assessment and prediction of the status of industry indicators is an important prerequisite for effectively preventing the spread of risks in China’s new financial formats. The role of investor sentiment should not be underestimated. We first use the BERT model to divide investor sentiment in the review information of China’s online lending third-party information website into three categories and analyze the relationship between investor sentiment and quantitative indicators of online lending product transactions. The results show that the percentage of positive comments has a positive relationship to the borrowing interest rate of P2P platforms that investors are willing to participate in for bidding projects. The percentage of negative comments has an inverse relationship to the borrowing period. Second, after introducing investor sentiment into the long short-term memory (LSTM) model, the average RMSE of the three forecast periods for borrowing interest rates is 0.373, and that of the borrowing period is 0.262, which are better than the values of other control models. Corresponding suggestions for the risk prevention of China’s new financial formats are made.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0262539 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 62539&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0262539

DOI: 10.1371/journal.pone.0262539

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0262539