EconPapers    
Economics at your fingertips  
 

TimTrack: A drift-free algorithm for estimating geometric muscle features from ultrasound images

Tim J van der Zee and Arthur D Kuo

PLOS ONE, 2022, vol. 17, issue 3, 1-17

Abstract: Ultrasound imaging is valuable for non-invasively estimating fascicle lengths and other features of pennate muscle, especially when performed computationally. Effective analysis techniques to date typically use optic flow to track displacements from image sequences, but are sensitive to integration drift for longer sequences. We here present an alternative algorithm that objectively estimates geometric features of pennate muscle from ultrasound images, without drift sensitivity. The algorithm identifies aponeuroses and estimates fascicle angles to derive fascicle lengths. Length estimates of human vastus lateralis and gastrocnemius fascicles in healthy subjects (N = 9 and N = 17 respectively) compared well (overall root-mean-square difference, RMSD = 0.52 cm) to manual estimates by independent observers (n = 3), with overall coefficient of multiple correlation (CMC) of 0.98. Our tests yielded accuracy (CMC, RMSD) and processing speed similar to or exceeding that of state-of-the-art algorithms. The algorithm requires minimal manual intervention and can optionally extrapolate fascicle lengths that extend beyond the image frame. It thus facilitates automated analysis of ultrasound images without drift.

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0265752 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 65752&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0265752

DOI: 10.1371/journal.pone.0265752

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0265752