On the effectiveness of graph matching attacks against privacy-preserving record linkage
Youzhe Heng,
Frederik Armknecht,
Yanling Chen and
Rainer Schnell
PLOS ONE, 2022, vol. 17, issue 9, 1-15
Abstract:
Linking several databases containing information on the same person is an essential step of many data workflows. Due to the potential sensitivity of the data, the identity of the persons should be kept private. Privacy-Preserving Record-Linkage (PPRL) techniques have been developed to link persons despite errors in the identifiers used to link the databases without violating their privacy. The basic approach is to use encoded quasi-identifiers instead of plain quasi-identifiers for making the linkage decision. Ideally, the encoded quasi-identifiers should prevent re-identification but still allow for a good linkage quality. While several PPRL techniques have been proposed so far, Bloom filter-based PPRL schemes (BF-PPRL) are among the most popular due to their scalability. However, a recently proposed attack on BF-PPRL based on graph similarities seems to allow individuals’ re-identification from encoded quasi-identifiers. Therefore, the graph matching attack is widely considered a serious threat to many PPRL-approaches and leads to the situation that BF-PPRL schemes are rejected as being insecure. In this work, we argue that this view is not fully justified. We show by experiments that the success of graph matching attacks requires a high overlap between encoded and plain records used for the attack. As soon as this condition is not fulfilled, the success rate sharply decreases and renders the attacks hardly effective. This necessary condition does severely limit the applicability of these attacks in practice and also allows for simple but effective countermeasures.
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0267893 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 67893&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0267893
DOI: 10.1371/journal.pone.0267893
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().