Lightweight mobile network for real-time violence recognition
Youshan Zhang,
Yong Li and
Shaozhe Guo
PLOS ONE, 2022, vol. 17, issue 10, 1-14
Abstract:
Most existing violence recognition methods have complex network structures and high cost of computation and cannot meet the requirements of large-scale deployment. The purpose of this paper is to reduce the complexity of the model to realize the application of violence recognition on mobile intelligent terminals. To solve this problem, we propose MobileNet-TSM, a lightweight network, which uses MobileNet-V2 as main structure. By incorporating temporal shift modules (TSM), which can exchange information between frames, the capability of extracting dynamic characteristics between consecutive frames is strengthened. Extensive experiments are conducted to prove the validity of this method. Our proposed model has only 8.49MB parameters and 175.86MB estimated total size. Compared with the existing methods, this method greatly reduced the model size, at the cost of an accuracy gap of about 3%. The proposed model has achieved accuracy of 97.959%, 97.5% and 87.75% on three public datasets (Crowd Violence, Hockey Fights, and RWF-2000), respectively. Based on this, we also build a real-time violence recognition application on the Android terminal. The source code and trained models are available on https://github.com/1840210289/MobileNet-TSM.git.
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0276939 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 76939&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0276939
DOI: 10.1371/journal.pone.0276939
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().