EconPapers    
Economics at your fingertips  
 

Domain generation algorithms detection with feature extraction and Domain Center construction

Xinjie Sun and Zhifang Liu

PLOS ONE, 2023, vol. 18, issue 1, 1-25

Abstract: Network attacks using Command and Control (C&C) servers have increased significantly. To hide their C&C servers, attackers often use Domain Generation Algorithms (DGA), which automatically generate domain names for C&C servers. Researchers have constructed many unique feature sets and detected DGA domains through machine learning or deep learning models. However, due to the limited features contained in the domain name, the DGA detection results are limited. In order to overcome this problem, the domain name features, the Whois features and the N-gram features are extracted for DGA detection. To obtain the N-gram features, the domain name whitelist and blacklist substring feature sets are constructed. In addition, a deep learning model based on BiLSTM, Attention and CNN is constructed. Additionally, the Domain Center is constructed for fast classification of domain names. Multiple comparative experiment results prove that the proposed model not only gets the best Accuracy, Precision, Recall and F1, but also greatly reduces the detection time.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0279866 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 79866&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0279866

DOI: 10.1371/journal.pone.0279866

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-05
Handle: RePEc:plo:pone00:0279866