Automated measurement of inter-arytenoid distance on 4D laryngeal CT: A validation study
Andrew Ma,
Nandakishor Desai,
Kenneth K Lau,
Marimuthu Palaniswami,
Terence J O’Brien,
Paari Palaniswami and
Dominic Thyagarajan
PLOS ONE, 2023, vol. 18, issue 1, 1-11
Abstract:
Changes to the voice are prevalent and occur early in Parkinson’s disease. Correlates of these voice changes on four-dimensional laryngeal computed-tomography imaging, such as the inter-arytenoid distance, are promising biomarkers of the disease’s presence and severity. However, manual measurement of the inter-arytenoid distance is a laborious process, limiting its feasibility in large-scale research and clinical settings. Automated methods of measurement provide a solution. Here, we present a machine-learning module which determines the inter-arytenoid distance in an automated manner. We obtained automated inter-arytenoid distance readings on imaging from participants with Parkinson’s disease as well as healthy controls, and then validated these against manually derived estimates. On a modified Bland-Altman analysis, we found a mean bias of 1.52 mm (95% limits of agreement -1.7 to 4.7 mm) between the automated and manual techniques, which improves to a mean bias of 0.52 mm (95% limits of agreement -1.9 to 2.9 mm) when variability due to differences in slice selection between the automated and manual methods are removed. Our results demonstrate that estimates of the inter-arytenoid distance with our automated machine-learning module are accurate, and represents a promising tool to be utilized in future work studying the laryngeal changes in Parkinson’s disease.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0279927 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 79927&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0279927
DOI: 10.1371/journal.pone.0279927
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().