EconPapers    
Economics at your fingertips  
 

Modeling for strain-softening rocks with lateral damage based on statistical physics

Xiaoming Li, Mingwu Wang, Fengqiang Shen and Hongfei Zhang

PLOS ONE, 2023, vol. 18, issue 3, 1-15

Abstract: Statistical physics is widely used to study the nonlinear mechanical behaviors of rock. For the limitations of existing statistical damage models and Weibull distribution, a new statistical damage with lateral damage is established. In addition, by introducing the maximum entropy distribution function and the strict constraint on damage variable, a expression of the damage variable matching the proposed model is obtained. Through comparing with the experimental results and the other two statistical damage models, the rationality of the maximum entropy statistical damage model is confirmed. The proposed model can better reflect the strain-softening behavior for rocks and respond to the residual strength, which provides a theoretical reference for practical engineering construction and design.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0283313 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 83313&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0283313

DOI: 10.1371/journal.pone.0283313

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-10
Handle: RePEc:plo:pone00:0283313