EconPapers    
Economics at your fingertips  
 

Predicting preterm births from electrohysterogram recordings via deep learning

Uri Goldsztejn and Arye Nehorai

PLOS ONE, 2023, vol. 18, issue 5, 1-20

Abstract: About one in ten babies is born preterm, i.e., before completing 37 weeks of gestation, which can result in permanent neurologic deficit and is a leading cause of child mortality. Although imminent preterm labor can be detected, predicting preterm births more than one week in advance remains elusive. Here, we develop a deep learning method to predict preterm births directly from electrohysterogram (EHG) measurements of pregnant mothers recorded at around 31 weeks of gestation. We developed a prediction model, which includes a recurrent neural network, to predict preterm births using short-time Fourier transforms of EHG recordings and clinical information from two public datasets. We predicted preterm births with an area under the receiver-operating characteristic curve (AUC) of 0.78 (95% confidence interval: 0.76-0.80). Moreover, we found that the spectral patterns of the measurements were more predictive than the temporal patterns, suggesting that preterm births can be predicted from short EHG recordings in an automated process. We show that preterm births can be predicted for pregnant mothers around their 31st week of gestation, prompting beneficial treatments to reduce the incidence of preterm births and improve their outcomes.

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0285219 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 85219&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0285219

DOI: 10.1371/journal.pone.0285219

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0285219