Generalized measurement error: Intrinsic and incidental measurement error
Edward Kroc
PLOS ONE, 2023, vol. 18, issue 6, 1-41
Abstract:
In this paper, we generalize the notion of measurement error on deterministic sample datasets to accommodate sample data that are random-variable-valued. This leads to the formulation of two distinct kinds of measurement error: intrinsic measurement error, and incidental measurement error. Incidental measurement error will be recognized as the traditional kind that arises from a set of deterministic sample measurements, and upon which the traditional measurement error modelling literature is based, while intrinsic measurement error reflects some subjective quality of either the measurement tool or the measurand itself. We define calibrating conditions that generalize common and classical types of measurement error models to this broader measurement domain, and explain how the notion of generalized Berkson error in particular mathematicizes what it means to be an expert assessor or rater for a measurement process. We then explore how classical point estimation, inference, and likelihood theory can be generalized to accommodate sample data composed of generic random-variable-valued measurements.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0286680 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 86680&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0286680
DOI: 10.1371/journal.pone.0286680
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().