EconPapers    
Economics at your fingertips  
 

Learned-SBL-GAMP based hybrid precoders/combiners in millimeter wave massive MIMO systems

Shoukath Ali K., Arfat Ahmad Khan, Perarasi T, Ateeq Ur Rehman and Khmaies Ouahada

PLOS ONE, 2023, vol. 18, issue 9, 1-22

Abstract: In Millimeter-Wave (mm-Wave) massive Multiple-Input Multiple-Output (MIMO) systems, hybrid precoders/combiners must be designed to improve antenna gain and reduce hardware complexity. Sparse Bayesian learning via Expectation Maximization (SBL-EM) algorithm is not practically feasible for high signal dimensions because estimating sparse signals and designing optimal hybrid precoders/combiners using SBL-EM still provide high computational complexity for higher signal dimensions. To overcome the issues of high computational complexity along with making it suitable for larger data sets, in this paper, we propose Learned-Sparse Bayesian Learning with Generalized Approximate Message Passing algorithm (L-SBL-GAMP) algorithm for designing optimal hybrid precoders/combiners suitable for mmWave Massive MIMO systems. The L-SBL-GAMP algorithm is an extension of the SBL-GAMP algorithm that incorporates a Deep Neural Network (DNN) to improve the system performance. Based on the nature of the training data, the L-SBL-GAMP can design the optimal Hybrid precoders/combiners, which enhances the spectral efficiency of mmWave massive MIMO systems. The proposed L-SBL-GAMP algorithm reduces the iterations, training overhead, and computational complexity compared to the SBL-EM algorithm. The simulation results unveil that the proposed L-SBL-GAMP provides higher achievable rates, better accuracy, and low computational complexity compared to the existing algorithm, such as Orthogonal Matching Pursuit (OMP), Simultaneous Orthogonal Matching Pursuit (SOMP), SBL-EM and SBL-GAMP for mmWave massive MIMO architectures.

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0289868 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 89868&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0289868

DOI: 10.1371/journal.pone.0289868

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0289868