Carbon peaking prediction scenarios based on different neural network models: A case study of Guizhou Province
Da Lian,
Shi Qiang Yang,
Wu Yang,
Min Zhang and
Wen Rui Ran
PLOS ONE, 2024, vol. 19, issue 6, 1-24
Abstract:
Global warming, caused by greenhouse gas emissions, is a major challenge for all human societies. To ensure that ambitious carbon neutrality and sustainable economic development goals are met, regional human activities and their impacts on carbon emissions must be studied. Guizhou Province is a typical karst area in China that predominantly uses fossil fuels. In this study, a backpropagation (BP) neural network and extreme learning machine (ELM) model, which is advantageous due to its nonlinear processing, were used to predict carbon emissions from 2020 to 2040 in Guizhou Province. The carbon emissions were calculated using conversion and inventory compilation methods with energy consumption data and the results showed an "S" growth trend. Twelve influencing factors were selected, however, five with larger correlations were screened out using a grey correlation analysis method. A prediction model for carbon emissions from Guizhou Province was established. The prediction performance of a whale optimization algorithm (WOA)-ELM model was found to be higher than the BP neural network and ELM models. Baseline, high-speed, and low-carbon scenarios were analyzed and the size and time of peak carbon emissions in Liaoning Province from 2020 to 2040 were predicted using the WOA-ELM model.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0296596 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 96596&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0296596
DOI: 10.1371/journal.pone.0296596
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().