EconPapers    
Economics at your fingertips  
 

Predicting black ice-related accidents with probabilistic modeling using GIS-based Monte Carlo simulation

Seok Bum Hong and Hong Sik Yun

PLOS ONE, 2024, vol. 19, issue 5, 1-23

Abstract: Black ice, a phenomenon that occurs abruptly owing to freezing rain, is difficult for drivers to identify because it mirrors the color of the road. Effectively managing the occurrence of unforeseen accidents caused by black ice requires predicting their probability using spatial, weather, and traffic factors and formulating appropriate countermeasures. Among these factors, weather and traffic exhibit the highest levels of uncertainty. To address these uncertainties, a study was conducted using a Monte Carlo simulation based on random values to predict the probability of black ice accidents at individual road points and analyze their trigger factors. We numerically modeled black ice accidents and visualized the simulation results in a geographical information system (GIS) by employing a sensitivity analysis, another feature of Monte Carlo simulations, to analyze the factors that trigger black ice accidents. The Monte Carlo simulation allowed us to map black ice accident occurrences at each road point on the GIS. The average black ice accident probability was found to be 0.0058, with a standard deviation of 0.001. Sensitivity analysis using Monte Carlo simulations identified wind speed, air temperature, and angle as significant triggers of black ice accidents, with sensitivities of 0.354, 0.270, and 0.203, respectively. We predicted the probability of black ice accidents per road section and analyzed the primary triggers of black ice accidents. The scientific contribution of this study lies in the development of a method beyond simple road temperature predictions for evaluating the risk of black ice occurrences and subsequent accidents. By employing Monte Carlo simulations, the probability of black ice accidents can be predicted more accurately through decoupling meteorological and traffic factors over time. The results can serve as a reference for government agencies, including road traffic authorities, to identify accident-prone spots and devise strategies focused on the primary triggers of black ice accidents.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0303605 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 03605&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0303605

DOI: 10.1371/journal.pone.0303605

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-05
Handle: RePEc:plo:pone00:0303605