EconPapers    
Economics at your fingertips  
 

Two hybrid flow shop scheduling lines with assembly stage and compatibility constraints

Rafael Muñoz-Sánchez, Iris Martínez-Salazar, José Luis González-Velarde and Yasmín Á Ríos Solís

PLOS ONE, 2024, vol. 19, issue 6, 1-16

Abstract: Two hybrid flow shop scheduling lines must be coordinated to assemble batches of terminated products at their last stage. Each product is thus composed of two jobs, each produced in one of the lines. The set of jobs is to be processed in a series of stages to minimize the makespan of the scheduling, but jobs forming a product must arrive at the assembly line simultaneously. We propose a mixed integer linear programming model. Then, based on the model, we propose a pull-matheuristic algorithm. Finally, we present two metaheuristics, a greedy randomized adaptive search procedure and a biased random key genetic algorithm, and compare all the methodologies with real-based instances of a production scheduling problem in the automobile manufacturing industry. The greedy algorithm yields high-quality solutions, while the genetic one offers the best computational times.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0304119 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 04119&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0304119

DOI: 10.1371/journal.pone.0304119

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-05
Handle: RePEc:plo:pone00:0304119