A Riemannian framework for incorporating white matter bundle prior in orientation distribution function based tractography algorithms
Thomas Durantel,
Gabriel Girard,
Emmanuel Caruyer,
Olivier Commowick and
Julie Coloigner
PLOS ONE, 2025, vol. 20, issue 3, 1-20
Abstract:
Diffusion magnetic resonance imaging (dMRI) tractography is a powerful approach to study brain structural connectivity. However, its reliability in a clinical context is still highly debated. Recent studies have shown that most classical algorithms achieve to recover the majority of existing true bundles. However, the generated tractograms contain many invalid bundles. This is due to the crossing fibers and bottleneck problems which increase the number of false positive fibers. In this work, we proposed to overpass this limitation with a novel method to guide the algorithms in those challenging regions with prior knowledge of the anatomy. We developed a method to create a combination of anatomical prior applicable to any orientation distribution function (ODF)-based tractography algorithms. The proposed method captures the tract orientation distribution (TOD) from an atlas of segmented fiber bundles and incorporates it during the tracking process, using a Riemannian framework. We tested the prior incorporation method on two ODF-based state-of-the-art algorithms, iFOD2 and Trekker PTT, on the diffusion-simulated connectivity (DiSCo) dataset and on the Human Connectome Project (HCP) data. We also compared our method with two bundles priors generated by the bundle specific tractography (BST) method. We showed that our method improves the overall spatial coverage and connectivity of a tractogram on the two datasets, especially in crossing fiber regions. Moreover, the fiber reconstruction may be improved on clinical data, informed by prior extracted on high quality data, and therefore could help in the study of brain anatomy and function.
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0304449 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 04449&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0304449
DOI: 10.1371/journal.pone.0304449
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().