Algebraic method for multisensor data fusion
Xiangbing Chen,
Chen Chen and
Xiaowen Lu
PLOS ONE, 2024, vol. 19, issue 9, 1-18
Abstract:
In this contribution, we use Gaussian posterior probability densities to characterize local estimates from distributed sensors, and assume that they all belong to the Riemannian manifold of Gaussian distributions. Our starting point is to introduce a proper Lie algebraic structure for the Gaussian submanifold with a fixed mean vector, and then the average dissimilarity between the fused density and local posterior densities can be measured by the norm of a Lie algebraic vector. Under Gaussian assumptions, a geodesic projection based algebraic fusion method is proposed to achieve the fused density by taking the norm as the loss. It provides a robust fixed point iterative algorithm for the mean fusion with theoretical convergence, and gives an analytical form for the fused covariance matrix. The effectiveness of the proposed fusion method is illustrated by numerical examples.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0307587 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 07587&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0307587
DOI: 10.1371/journal.pone.0307587
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().