EconPapers    
Economics at your fingertips  
 

Empowering legal justice with AI: A reinforcement learning SAC-VAE framework for advanced legal text summarization

Xukang Wang and Ying Cheng Wu

PLOS ONE, 2024, vol. 19, issue 10, 1-11

Abstract: Automated summarization of legal texts poses a significant challenge due to the complex and specialized nature of legal documentation. Despite the recent progress in reinforcement learning for natural language text summarization, its application in the legal domain has been less effective. This paper introduces SAC-VAE, a novel reinforcement learning framework specifically designed for legal text summarization. We leverage a Variational Autoencoder (VAE) to condense the high-dimensional state space into a more manageable lower-dimensional feature space. These compressed features are subsequently utilized by the Soft Actor-Critic (SAC) algorithm for policy learning, facilitating the automated generation of summaries from legal texts. Through comprehensive experimentation, we have empirically demonstrated the effectiveness and superior performance of the SAC-VAE framework in legal text summarization.

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0312623 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 12623&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0312623

DOI: 10.1371/journal.pone.0312623

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0312623