EconPapers    
Economics at your fingertips  
 

Illustration image style transfer method design based on improved cyclic consistent adversarial network

Xiaojun Wang and Jing Jiang

PLOS ONE, 2025, vol. 20, issue 1, 1-22

Abstract: To improve the expressiveness and realism of illustration images, the experiment innovatively combines the attention mechanism with the cycle consistency adversarial network and proposes an efficient style transfer method for illustration images. The model comprehensively utilizes the image restoration and style transfer capabilities of the attention mechanism and the cycle consistency adversarial network, and introduces an improved attention module, which can adaptively highlight the key visual elements in the illustration, thereby maintaining artistic integrity during the style transfer process. Through a series of quantitative and qualitative experiments, high-quality style transfer is achieved, especially while retaining the original features of the illustration. The results show that when running on the Monet2photo dataset, when the system iterates to 72 times, the loss function value of the research method approaches the target value of 0.00. On the Horse2zebra dataset, as the sample size increases, the research method has the smallest FID value, and the value approaches 40.00 infinitely. With the change of peak signal-to-noise ratio, the accuracy of the research algorithm has been greater than 95.00%. Practical application found that the color of the image obtained by the research method is more gorgeous and the line features are more obvious. The above results all show that the research method has achieved more satisfactory results in the task of style transfer of illustration images, especially in terms of the accuracy of style transfer and the retention of image details.

Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0313113 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 13113&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0313113

DOI: 10.1371/journal.pone.0313113

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0313113