Machine learning driven dashboard for chronic myeloid leukemia prediction using protein sequences
Waqar Ahmad,
Abdul Raheem Shahzad,
Muhammad Awais Amin,
Waqas Haider Bangyal,
Tahani Jaser Alahmadi and
Saddam Hussain Khan
PLOS ONE, 2025, vol. 20, issue 6, 1-16
Abstract:
The prevalence of Leukaemia, a malignant blood cancer that originates from hematopoietic progenitor cells, is increasing in Southeast Asia, with a worrisome fatality rate of 54%. Predicting outcomes in the early stages is vital for improving the chances of patient recovery. The aim of this research is to enhance early-stage prediction systems in a substantial manner. Using Machine Learning and Data Science, we exploit protein sequential data from commonly altered genes including BCL2, HSP90, PARP, and RB to make predictions for Chronic Myeloid Leukaemia (CML). The methodology we implement is based on the utilisation of reliable methods for extracting features, namely Di-peptide Composition (DPC), Amino Acid Composition (AAC), and Pseudo amino acid composition (Pse-AAC). We also take into consideration the identification and handling of outliers, as well as the validation of feature selection using the Pearson Correlation Coefficient (PCA). Data augmentation guarantees a comprehensive dataset for analysis. By utilising several Machine Learning models such as Support Vector Machine (SVM), XGBoost, Random Forest (RF), K Nearest Neighbour (KNN), Decision Tree (DT), and Logistic Regression (LR), we have achieved accuracy rates ranging from 66% to 94%. These classifiers are thoroughly evaluated utilising performance criteria such as accuracy, sensitivity, specificity, F1-score, and the confusion matrix.The solution we suggest is a user-friendly online application dashboard that can be used for early detection of CML. This tool has significant implications for practitioners and may be used in healthcare institutions and hospitals.
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0321761 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 21761&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0321761
DOI: 10.1371/journal.pone.0321761
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().