EconPapers    
Economics at your fingertips  
 

PCB-YOLO: Enhancing PCB surface defect detection with coordinate attention and multi-scale feature fusion

Ze Wei, Fan Yang, Kezhen Zhong and Linkun Yao

PLOS ONE, 2025, vol. 20, issue 6, 1-29

Abstract: Nowadays, industrial electronic products are integrated into all aspects of life, with PCB quality playing a decisive role in their performance. Ensuring PCB factory quality is thus crucial. Common PCB defects serve as key references for evaluating quality. To address low detection accuracy and the bulky size of existing models, we propose an improved PCB-YOLO model based on YOLOv8n.To reduce model size, we introduce a novel CRSCC module combining SCConv convolution and C2f, enhancing PCB defect detection accuracy and significantly reducing model parameters. For feature fusion, we propose the FFCA attention module, designed to handle PCB surface defect characteristics by fusing multi-scale local features. This improves spatial dependency capture, detail attention, feature resolution, and detection accuracy. Additionally, the WIPIoU loss function is developed to calculate IoU using auxiliary boundaries and address low-quality data, improving small-target recognition and accelerating convergence. Experimental results demonstrate significant improvements in PCB defect detection, with mAP50 increasing by 5.7%, and reductions of 13.3% and 14.8% in model parameters and computational complexity, respectively. Compared to mainstream models, PCB-YOLO achieves the best overall performance. The model’s effectiveness and generalization are further validated on the NEU-DET steel surface defect dataset, achieving excellent results. The PCB-YOLO model offers a practical, efficient solution for PCB and steel defect detection, with broad application prospects.

Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0323684 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 23684&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0323684

DOI: 10.1371/journal.pone.0323684

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-06-21
Handle: RePEc:plo:pone00:0323684