Protocol for evaluating the cost-effectiveness of Mongolia’s sugar-sweetened beverages tax using double machine learning
Nyamdavaa Byambadorj,
Rohan Best,
Undram Mandakh and
Kompal Sinha
PLOS ONE, 2025, vol. 20, issue 6, 1-12
Abstract:
Elevated consumption of sugar-sweetened beverages (SSBs) has been associated with an increase in obesity, type 2 diabetes, and other non-communicable diseases (NCDs), a significant health and economic burden on Mongolia. To address this, the government has introduced a 20% SSB tax set to take effect in 2027. This study conducts a Cost-Effectiveness Analysis (CEA) using a Markov cohort model, incorporating Double Machine Learning (DML) to estimate price elasticity and assess policy-driven consumption changes while addressing potential confounding. The analysis integrates DML-estimated price elasticity and consumption shifts with disease transition probabilities, simulating outcomes for the 2023 Mongolian population, aged over 15 years old, over two time horizons of 20 years and a lifetime. The model estimates changes in obesity prevalence, healthcare costs, and disease burden, translating them into Disability-Adjusted Life Years (DALYs) averted, and Quality-Adjusted Life Years (QALYs) gained. Tax revenue projections and sensitivity analyses further assess the robustness of assumptions. By combining machine learning-based causal inference with economic modelling, this study provides policy-relevant evidence on the cost-effectiveness of SSB taxation, supporting data-driven decision-making for public health strategies in Mongolia, highlighting the tax’s potential to reduce the burden of NCDs and promote healthier behaviours.
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0324378 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 24378&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0324378
DOI: 10.1371/journal.pone.0324378
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().