Optimizing EV charging stations and power trading with deep learning and path optimization
Qing Zhu
PLOS ONE, 2025, vol. 20, issue 7, 1-22
Abstract:
The rapid growth of electric vehicles (EVs) presents significant challenges for power grids, particularly in managing fluctuating demand and optimizing the placement of charging infrastructure. This study proposes an integrated framework combining deep learning, reinforcement learning, path optimization, and power trading strategies to address these challenges. A Long Short-Term Memory (LSTM) model was employed to predict regional EV charging demand, improving forecasting accuracy by 12.3%. A Deep Q-Network (DQN) optimized charging station placement, reducing supply-demand imbalances by 8.9%. Path optimization, using the Dijkstra algorithm, minimized travel times for EV users by 11.4%. Additionally, regional power trading was optimized to balance electricity supply and demand, reducing locational marginal price (LMP) disparities by 10%. The combined system resulted in reduced grid congestion, lower operational costs, and improved user satisfaction. These findings demonstrate the potential of integrating advanced machine learning techniques with power grid management to support the growing demand for EVs.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0325119 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 25119&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0325119
DOI: 10.1371/journal.pone.0325119
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().