Understanding dimensions of trust in AI through quantitative cognition: Implications for human-AI collaboration
Weizheng Jiang,
Dongqin Li and
Chun Liu
PLOS ONE, 2025, vol. 20, issue 7, 1-17
Abstract:
Human-AI collaborative innovation relies on effective and clearly defined role allocation, yet empirical research in this area remains limited. To address this gap, we construct a cognitive taxonomy trust in AI framework to describe and explain its interactive mechanisms in human-AI collaboration, specifically its complementary and inhibitive effects. Specifically, we examine the alignment between trust in AI and different cognitive levels, identifying key drivers that facilitate both lower-order and higher-order cognition through AI. Furthermore, by analyzing the interactive effects of multidimensional trust in AI, we explore its complementary and inhibitive influences. We collected data from finance and business administration interns using surveys and the After-Action Review method and analyzed them using the gradient descent algorithm. The findings reveal a dual effect of trust in AI on cognition: while functional and emotional trust enhance higher-order cognition, the transparency dimension of cognitive trust inhibits cognitive processes. These insights provide a theoretical foundation for understanding trust in AI in human-AI collaboration and offer practical guidance for university-industry partnerships and knowledge innovation.
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0326558 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 26558&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0326558
DOI: 10.1371/journal.pone.0326558
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().